Sunday, October 17, 2010

October 2010 Brain Teaser Solution

Q: What is the greatest possible product of two positive whole numbers whose sum is 100?
A: 2500 (50 x 50)

Let x = one number then 100 - x = other number
So we want to maximize the product of this algebra, x(100 - x) = 100x - x^2
see the graph below:








This result can also be achieved through Calculus.  If we take the derivative of the algebra and set that equal to 0, then solve for x.
The derivative of 100x - x^2 is 100 - 2x, when 100 - 2x = 0 is solved x = 50.
When we substitute 50 into 100x - x^2, we get
100(50) - (50)^2

5000 - 2500 = 2500
So the maximum point is at x = 50 -- at the (x,y) point (50, 2500).
The list below shows:
Column 1 first number
Column 2 100 - first number
Column 3 product of Column 1 and Column 2

1 99 99

2 98 196

3 97 291

4 96 384

5 95 475

6 94 564

7 93 651

8 92 736

9 91 819

10 90 900

11 89 979

12 88 1056

13 87 1131

14 86 1204

15 85 1275

16 84 1344

17 83 1411

18 82 1476

19 81 1539

20 80 1600

21 79 1659

22 78 1716

23 77 1771

24 76 1824

25 75 1875

26 74 1924

27 73 1971

28 72 2016

29 71 2059

30 70 2100

31 69 2139

32 68 2176

33 67 2211

34 66 2244

35 65 2275

36 64 2304

37 63 2331

38 62 2356

39 61 2379

40 60 2400

41 59 2419

42 58 2436

43 57 2451

44 56 2464

45 55 2475

46 54 2484

47 53 2491

48 52 2496

49 51 2499

50 50 2500

51 49 2499

52 48 2496

53 47 2491

54 46 2484

55 45 2475

56 44 2464

57 43 2451

58 42 2436

59 41 2419

60 40 2400

61 39 2379

62 38 2356

63 37 2331

64 36 2304

65 35 2275

66 34 2244

67 33 2211

68 32 2176

69 31 2139

70 30 2100

71 29 2059

72 28 2016

73 27 1971

74 26 1924

75 25 1875

76 24 1824

77 23 1771

78 22 1716

79 21 1659

80 20 1600

81 19 1539

82 18 1476

83 17 1411

84 16 1344

85 15 1275

86 14 1204

87 13 1131

88 12 1056

89 11 979

90 10 900

91 9 819

92 8 736

93 7 651

94 6 564

95 5 475

96 4 384

97 3 291

98 2 196

99 1 99

100 0 0